Linker-Extended Native Cyanovirin-N Facilitates PEGylation and Potently Inhibits HIV-1 by Targeting the Glycan Ligand

نویسندگان

  • Jia Chen
  • Dane Huang
  • Wei Chen
  • Chaowan Guo
  • Bo Wei
  • Chongchao Wu
  • Zhou Peng
  • Jun Fan
  • Zhibo Hou
  • Yongsheng Fang
  • Yifei Wang
  • Kaio Kitazato
  • Guoying Yu
  • Chunbin Zou
  • Chuiwen Qian
  • Sheng Xiong
چکیده

Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4(+) cells.

It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit HIV-1 infection by binding to mannose-rich glycans on gp120. We measured the ability of these lectins to inhibit both the HIV-1 binding to DC-SIGN an...

متن کامل

The antiviral lectin cyanovirin-N: probing multivalency and glycan recognition through experimental and computational approaches.

CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the anti...

متن کامل

Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models.

The cyanobacterial protein cyanovirin-N (CV-N) potently inactivates diverse strains of HIV-1 and other lentiviruses due to irreversible binding of CV-N to the viral envelope glycoprotein gp120. In this study, we show that recombinant CV-N effectively blocks HIV-1(Ba-L) infection of human ectocervical explants. Furthermore, we demonstrate the in vivo efficacy of CV-N gel in a vaginal challenge m...

متن کامل

A Designed “Nested” Dimer of Cyanovirin-N Increases Antiviral Activity

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of se...

متن کامل

Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A.

Due to the biological significance of the carbohydrate component of the human immunodeficiency virus type 1 (HIV-1) glycoproteins in viral pathogenesis, the glycosylation step constitutes an attractive target for anti-HIV therapy. Cyanovirin N (CV-N), which specifically targets the high-mannose (HM) glycans on gp120, has been identified as a potent HIV-1 entry inhibitor. Concanavalin A (ConA) r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014